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Mesoscopic gap fluctuations in an unconventional superconductor
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We study mesoscopic disorder fluctuations in an anisotropic gap superconductor, which lead to the spatial

variations of the local pairing temperature and formation of superconducting islands above the mean-field
transition. We derive the probability distribution function of the pairing temperatures and superconducting
gaps. It is shown that above the mean-field transition, a disordered BCS superconductor with an unusual
pairing symmetry is described by a network of superconducting islands and metallic regions with a strongly
suppressed density of states due to superconducting fluctuations. We argue that the phenomena associated with

mesoscopic disorder fluctuations may also be relevant to the high-temperature superconductors, in particular, to
recent scanning tunnel microscope (STM) experiments, where gap inhomogeneities have been explicitly ob-
served. It is suggested that the gap fluctuations in the pseudogap phase should be directly related to the

corresponding fluctuations of the pairing temperature.
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Understanding the phase diagram and the properties of the
high-temperature and other unconventional superconductors
has been among the most complex problems of modern con-
densed matter physics. Most current theoretical approaches
to the problem concentrate on strong correlation physics and
usually assume that the effects of disorder are unimportant.
However, there exist a number of recent experimental works,
in particular scanning tunnel microscope (STM) studies of
the high-T, cuprates,'~” which provide a tentative indication
that at least in some materials disorder plays an important
role in the local formation of the superconducting gap. In
particular, Gomes et al.> have studied the local development
of the gap as a function of temperature in Bi,Sr,CaCu,Og, s
above the superconducting transition and up to a pseudogap
temperature, where the gap inhomogeneities cease to exist.
An important result of this experiment is that the real-space
gap map observed was static and reproducible. This strongly
suggests that the inhomogeneous gap formation is unlikely to
be a phase-separation or superconducting fluctuation effect,
but is due to some kind of disorder in the system.

Motivated by these experiments, we theoretically consider
a disordered superconductor with an unusual pairing symme-
try (e.g., a d-wave superconductor) and study mesoscopic
variations of the local pairing temperature. We point out that
the existence of the Griffiths-type®~'° phase in the supercon-
ducting phase diagram is specific to an anisotropic gap su-
perconductor and should not occur in the conventional
s-wave systems (due to Anderson theorem), unless they are
extremely dirty or time-reversal symmetry is broken.!""13 An
important observation is that if the pairing gap is anisotropic,
the Anderson theorem breaks down and the superconducting
pairing temperature T}, is suppressed by disorder even if
time-reversal symmetry is preserved (here and below we
make a distinction between the pairing temperature 7, and
the superconducting transition temperature 7. although in the
framework of the weak-coupling BCS theory they are essen-
tially the same). The impurities are positioned randomly in
space and their density is a random variable. Thus, there
always exist regions where the distribution of impurities is
such that the local pairing temperature 7,(r) is larger than
the system-wide average value (7,) and the experimental
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temperature T.'* These regions form islands with a well-
defined gap, which exist on the background of a metal, if
T,(r)>T>(T,). The width of the “mesoscopic fluctuation”
region certainly depends on the strength of disorder and the
only parameter, which may enter this dependence, is the di-
mensionless conductance. This defines a narrow window
where the disorder-induced Griffiths phase coexists with
strong superconducting fluctuations. Therefore, the picture of
impurity induced inhomogeneities in an anisotropic gap BCS
superconductor is that of superconducting islands and metal-
lic regions with strongly suppressed density of states.

We start with the following Hamiltonian with a built-in
[-wave pairing (1>0):

2
H= f dzr{ fpf(r)[— Z—m - p+ U(r)] gr) - x,ﬁ(r)é(r)},
(1)

where U(r) is a disorder potential, \; is the [-wave interac-
tion constant, and b(r) corresponds to an “/-wave Cooper

pair” l;(r)=2k,qxl(¢)fp(k+q/2) &(p—q/Z)eiq'r, with ¢ being
the angle between the direction of the vector k and the x
axis, and y;(¢) is the function which enforces the [-wave
symmetry of the gap in the mean field.

The first step is to integrate out the fermions and express
the action in terms of the order parameter Ay
=S V(KK )F(k'—q/2,k+q/2)e™", where according to
Eq. (1) the interaction V(k,k")==N;x;(&)x)(¢') and F is the
standard Gor’kov’s Green’s function. In what follows we
will concentrate on the spatial dependence of the gap and
assume that its symmetry in the k space is preserved:
Ar(r)=A(r)x, (k) =Ayf(r)x;(k). Using these notations, we
arrive at the following free energy for the system expressed
in terms of the inhomogeneous order parameter A(r):

1
A*(r)A(r;,ry)A(r) + Zf A*(ry)

1,2,3,4

As=5

1,2

XA*(rp)B(ry,1r5,13,1,)A(r;) A(ry), (2)

where A(ry,r,)=\;'8(r,~r,)—C(r;,r,) and the Cooperon C
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FIG. 1. (a) The particle-particle bubble for an anisotropic gap
superconductor. This Cooperon diagram contributes to the coeffi-
cient in the quadratic term of the Ginzburg-Landau expansion (2).
All disorder vertex corrections to the Cooperon vanish. (b) Pictorial
representation for the coefficient in quartic term of the Ginzburg-
Landau expansion (2). (c) One of the universal conduction fluctua-
tion (UCF)-type diagrams, which contribute to the mesoscopic fluc-
tuations of the transition point and mesoscopic gap fluctuations.

is a random matrix expressed through the Green’s functions
(before  averaging  over disorder) as  C(r;,r,)
=T2, G(e,;r|,r))G(=¢,;r,r). As long as we are inter-
ested in the location of the classical (finite-temperature)
phase transition, the dynamics of the order parameter and the
Cooperon are not important. We present the Cooperon as a
superposition of a local “mean-field” part and a disorder de-

pendent correction C=(C)+ 6C. The “mean-field” part is dia-
grammatically described by a simple Cooper bubble, without
the disorder ladder [see Fig. 1(a)]. Any disorder vertex cor-
rection vanishes due to the unusual symmetry of the gap. The
line where the average Ginzburg-Landau coefficient vanishes
(A)=0 determines the mean-field transition and leads to the
well-known Abrikosov-Gor’kov’s equation'?

T

where T, is the pairing temperature without disorder and 7
is the scattering time. This equation implies that the pair-
breaking effect of the conventional disorder potential in an
anisotropic gap superconductor [i.e., [dpx(#)=0] is identi-
cal to that of a time-reversal perturbation in an s-wave
superconductor.'® We reiterate that Eq. (3) is a result of the
averaging over disorder in the sample. Below we study me-
soscopic corrections to this result, which qualitatively can be
interpreted as local changes in the scattering time 7(r) in
Eq. (3).

We note that, strictly speaking, the nonlinear operator in
the quartic term of Eq. (2) is also random, however its fluc-
tuations can be neglected near the transition and its mean
field value can be used (B). This coefficient is pictorially
described by the Hikami-box diagram in Fig. 1(b). A straight-
forward calculation of this diagram gives the following gen-
eral result:

1 1
+
2 477T

el
lnT =
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" I /l
(B)=- 16712T2[ W( )+|X1|4W(2+6Y)] (4)

where v is the density of states, Ct’=(27TT[,T)_1, and the over-
line implies averaging over the Fermi surface. In the clean
limit, Eq. (4) reproduces the result of Feder and Kallin,"”
(BYy=7¢(3)v/(87T?). We note that the dirty limit is not rea-
sonable in the context of an anisotropic gap superconductor,
since it implies that the pairing temperature is suppressed to
zero and there is no superconductivity. The maximum impu-
rity concentration that allows for superconductivity (the
quantum critical point) is T,g7gpr=7y/7~1, where vy
~1.781 is the exponential of the Euler’s constant.

To find the local variations of the transition temperature,
we consider the following eigenvalue problem for the ran-

dom matrix C:

1% f d*r' 8C(r,r")A(r') = eA(r), (5)

and define the probability distribution function (PDF) of its
eigenvalues p(g)=(5(e— ¢ 5C])). The averaging is performed
over the PDF of the random Cooperon matrix, which we

assume Gaussian P[5C]eexp —%5@ * K% 5C|, where the
asterisk implies a convolution over the two spatial variables

and the operator K corresponds to the correlator of two
Cooperon operators, which in position representation has the
form K(r,,r,;r;,r;)=(8C(r,,r;)8C(r;3,r,)). This disorder-
averaged correlator can be calculated using the standard dia-
grammatic technique [see Fig. 1(c)]. These diagrams are to-
pologically equivalent to the universal conduction fluctuation
(UCF) diagrams. However, there are important differences:
(i) first, here we are interested in the Cooper channel and (ii)
second, we are interested in the local physics, not in a long-
wavelength behavior of the correlator.

Using the standard technique,'® we find the following ex-
pression for the correlator:

2 T2 |2
Ki[{ri{]= 8(r; —ry) dr, - r3) |: 4771’|'2XD[|V]

f f _dnd,
70 J 7o tita(ty + 1)
[1+l2 D)
Xexp| — r —-r . 6
P{ 4Dt1t2| 1 3| } (6)

Here the index “1” implies that we consider only one among
all possible UCF-type diagrams. However, they all contribute
equally to the correlator of interest and lead to a combinato-
rial factor of ¢, which is equal to ¢=12 in the orthogonal
ensemble and ¢=6 in the unitary ensemble (e.g., in the pres-
ence of a magnetic field).

The PDF of the local transition temperatures and the cor-
responding gap amplitudes can be obtained using the optimal
fluctuation method'’

100502-2



MESOSCOPIC GAP FLUCTUATIONS IN AN...

1 é
(p(€)) = exp S| (7)

<f®f|f<|f®f>

where the eigenvalue € has the physical meaning of a
local pairing temperature fluctuation and f(r) is a
normalized function, which describes the spatial profile
and the shape of a single disorder-induced superconducting
[if €>(T—(T,))/T] or metallic [if e<(T—(T,))/T]
puddle. Strictly speaking the Ilatter function must be
found from a nonlinear integral equation €f(r)
=A[1 23 () f*(r)K(ry .1, 15,1)f(r3) (where A is a
Lagrange multiplier that appears in the optimal fluctuation
method; see Ref. 19 for technical details). However, one can
obtain a quantitatively reliable description of the PDF by
considering the puddle function to be a Gaussian of a char-
acteristic size &, i.e., f(r) =(7T§2)‘lexp(—2r—2). In principle, one
can study the distribution of puddle shapes by decomposing
the function f(r) into spherical harmonics. We do not attempt
a study of the puddle shapes here, but just point out that
“higher-orbital momentum puddles” are less probable than
spherically symmetric ones; the probability of finding a
droplet with “orbital momentum” m scales as p,,* py', where
Do 1s the probability of a spherical puddle. To find the latter
we explicitly calculate the correlator in Eq. (7) and find

(Fof|K|f@fH=3c/4m(2/E)1/g%, where £ is the size of a
puddle, / is the mean free path, and g=FEg7/ m is the dimen-

sionless conductance. This leads to the following PDF of
T,’s (7):

2 B 2
<p<f,T)>o<exp[— ‘;-”(%) gZ(f%ﬁ) } ®)
)4

We note that by applying a magnetic field, one can cross
over from the orthogonal to the unitary ensemble and change
the combinatorial factor in Eq. (8) from ¢=12 to ¢=6, which
may be experimentally testable and should manifest itself as
a diminishing of the random 7),(H) or gap distribution width
exactly by the factor of 2. To find the PDF of the supercon-
ducting gaps, we can just use the Ginzburg-Landau equation
(2) and set AO=\,/V(TP—T)/((TP)(B)), where (B) is given by
Eq. (4). We note that it makes sense to consider a finite-size
droplet with a well defined local transition temperature or a
gap, only if the size of the droplet is much larger than the
coherence length &> §A0. The opposite limit corresponds to
the case of a mesoscopic superconducting nanograin in
which the notion of the gap is not well defined (see Ref. 20)
for a review). Therefore, the smallest possible size of the
puddle with a well defined gap A, is &nin~ U/ A, Which
implies that the dimensionless ratio &y;,/[~ (T, 7)™". The lat-
ter parameter is of order one and thus the PDF of the gaps
takes the form (see also Fig. 2)

~ 2gVBbA <bA2 T—<T>ﬂ
A~ Ty eXp{_ﬁ Nyt )] O

where in the d-wave case, b~ —[%W"(%+a)+3lﬂ’(%
+a)l/(3277), a=(Ep/(T,)(27%g)", and B~ 1. Note that in
Eq. (9) we have omitted a term proportional to «&(A), which
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FIG. 2. (Color online) Plotted are distribution functions of the
superconducting gap A >0 for various temperatures 7. We assumed
the following parameters: g=10, Ep/T,~40, T,=93 K. The latter
choice is motivated by the experimental work (Ref. 2) on
Bi,Sr,CaCu,0g, 5, where inhomogeneities have been observed. The
temperature behavior of the PDF following from the mesoscopic
fluctuation theory is qualitatively similar to that observed in experi-
ment (Ref. 2). However, we note here that since our approach is
based on the BCS theory, the theoretical results may not provide a
quantitatively accurate description of the cuprates.

describes normal regions. The physical picture, which
emerges for such a disordered superconductor is that right
above the mean-field transition temperature there exist rare
superconducting islands separated by ‘“normal regions”
(which are still very close to the local transition tempera-
ture). We note that since the parameter g7,/ Ef is at best of
order 1, the “mesoscopic Griffiths phase” overlaps with the
Ginzburg region of strong superconducting fluctuations.?!
This leads to the conclusion that the Griffiths phase is a
mixture of superconducting islands and metallic regions with
strongly suppressed density of states.

Even though our quantitative description directly applies
only to a weakly coupled BCS superconductor, we believe
that some aspects of the theory are relevant to the cuprates as
well (the importance of disorder effects for the cuprates have
been discussed previously, see, e.g. Refs. 22-27). But first,
we make the following curious observation: In a high-7.
superconductor the major source of disorder is presumably
the dopant atoms. But this access oxygen is also the source
of the carriers, which lead to superconductivity in the first
place. Thus, the “clean” pairing temperature in the
Abrikosov-Gor’kov’s formula (3) should explicitly depend
on the doping level, T,(x) (e.g., through a BCS-like high-
energy cutoff or possibly via a locally modulated electron
pairing interaction.”) The scattering time depends on x too
and contributes to superconductivity suppression. Thus there
are two competing effects of the dopants: They both enhance
and suppress superconducting properties. An interesting re-
sult, which follows from the simple Abrikosov-Gor’kov’s
equation (3), is that even if 7,,(x) is monotonically increas-
ing with x, but T,,(x)7(x) <x™% with @>0, then the actual
pairing temperature doping dependence has a dome-shaped
form. An example of such a dependence for a=1/2 is plotted
in Fig. 3.

The mesoscopic disorder fluctuations in the Abrikosov-
Gor’kov theory may not correspond to the modulations of
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FIG. 3. (Color online) This figure is to illustrate the qualitative
discussion in the text about the possibility of a dome-shaped doping
dependence of the pairing temperature within the Abrokosov-
Gor’kov theory. The figure shows a typical dependence of 7, on
“doping,” X, in the toy model of the Abrikosov-Gor’kov theory with
both 7,(x) and (x) being dependent on the same doping param-
eter. The graphs are solutions of the following equation for 7,:
In(x'=%/1,)=y(1/2+x8/1,)=)(1/2), where 1, is a dimensionless
pairing temperature and & characterizes the strength of disorder. The
graphs correspond to a=1/2 and §=0.1 (red line), 0.15 (blue line),
and 0.2 (green line).

the transition temperature in a high-7, superconductor, but
should be related to the modulations of the pseudogap tem-
perature T, which is believed to be the onset of Cooper
pairing (i.e., to T,, but not T,.). The “pseudogap” region
T,<T<T, presumably represents the regime of strong phase
fluctuations®® and the superconducting transition is expected
to be that of XY-type. In the latter scenario, the transition
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temperature is proportional to the superfluid density, which
in turn is directly related to the local value of the gap. The
mean-field gap is determined by the deviation (7,—T) from
the local pairing temperature (e.g., via a nonlinear BCS-like
self-consistency equation 85/ 8A=0). If T,(r) fluctuates due
to disorder, so does A(r) and, quite generally, the local gap
should “follow” local T, In fact, such a correlation has been
observed in experiment.” In the model of uncorrelated short-
range disorder, the only possible result for the corresponding
PDF is Eq. (9), with A centered in the vicinity of the mean-
field gap at the given temperature P[A]xexp{-Bg’1
—A/(A(T))]*}. In a clean material, the corresponding regime
of mesoscopic fluctuations is very narrow unless there are
other types of disorder effects, such as “structural disorder”
[e.g., extended defects, warping of the two-dimensional (2D)
planes, etc.], which can be modeled as a random diffusion
coefficient'® (D(r)D(0))=(D)*a*>(r). These phenomena lead
to qualitatively the same effect of random 7, and A, but, may
occur at length scales much larger than the mean free path
and become important in a much wider range of parameters
[the width of the distribution is determined by (a/l)g™! in-
stead of g7!]. We also note that if indeed the local gap fluc-
tuations observed in the experiment® are related to mesos-
copic disorder effects, they should be correlated with the
pinning properties,” i.e., the width of the gap distribution
should be proportional to the critical current j,. in the collec-
tive pinning regime,’® {((1-A/(A)?y(j/j.o)(H/H.,,)
(where j is the critical current in zero field).

The author acknowledges the Aspen Center for Physics
for hospitality and the JQI for financial support.

'@. Fischer et al., Rev. Mod. Phys. 79, 353 (2007).

2K. Gomes et al., Nature (London) 447, 569 (2007).

3K. McElroy et al., Science 309, 1048 (2005).

4M. Kugler, et al., Phys. Rev. Lett. 86, 4911 (2001).

5C. Howald et al., Phys. Rev. B 64, 100504(R) (2001).

6S. H. Pan e al., Nature (London) 413, 282 (2001).

7K. M. Lang et al., Nature (London) 415, 412 (2002).

8R. Griffiths, Phys. Rev. Lett. 23, 17 (1969).

°S. Guo et al., Phys. Rev. Lett. 100, 017209 (2008); J. Deisen-
hofer et al., ibid. 95, 257202 (2005).

10V, M. Galitski e al., Phys. Rev. Lett. 92, 177203 (2004); A.
Kaminski er al., Phys. Rev. B 70, 115216 (2004).

B, Spivak and F. Zhou, Phys. Rev. Lett. 74, 2800 (1995).

2A. Lamacraft and B. D. Simons, Phys. Rev. Lett. 85, 4783
(2000).

3V, M. Galitski and A. I. Larkin, Phys. Rev. Lett. 87, 087001
(2001).

141 Toffe and A. Larkin, Zh. Eksp. Teor. Fiz. 81, 707 (1981) [Sov.
Phys. JETP 54, 378 (1981)].

ISA. A. Abrikosov and L. P. Gorkov, Zh. Eksp. Teor. Fiz. 39, 178

(1960) [Sov. Phys. JETP 12, 1243 (1961)].

16 A, Larkin, Zh. Eksp. Teor. Fiz. 48, 232 (1965) [Sov. Phys. JETP
21, 153 (1965)].

17D. L. Feder and C. Kallin, Phys. Rev. B 55, 559 (1997).

8B. N. Narozhny er al., Phys. Rev. B 62, 14898 (2000).

19B. 1. Halperin and M. Lax, Phys. Rev. 148, 722 (1966).

203, von Delft and D. C. Ralph, Phys. Rep. 345, 61 (2001).

2LA. Larkin and A. Varlamov, in The Physics of Superconductors,
edited by K. H. Bennemann and J. B. Ketterson (Springer-
Verlag, Berlin, 2003).

227 Wang et al., Phys. Rev. B 65, 064509 (2002).

238, Graser et al., Phys. Rev. B 76, 054516 (2007).

2B. M. Andersen et al., Phys. Rev. B 74, 060501(R) (2006).

23Y. He et al., Phys. Rev. Lett. 96, 197002 (2006).

A, V. Balatsky and J. X. Zhu, Phys. Rev. B 74, 094517 (2006).

2TM. M. Maska er al., Phys. Rev. Lett. 99, 147006 (2007).

V. J. Emery and S. A. Kivelson, Nature (London) 374, 434
(1995).

P A. L. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 65,
1704 (1973) [Sov. Phys. JETP 38, 854 (1974)].

100502-4



